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Abstract— Fractal two-dimensional Electromagnetic Band-
Gap (EBG) materials are proposed and studied by means of
a full-wave method developed for diffraction gratings. Such
technique allows us to characterize, in a rapidly convergent
way, the transmission and reflection properties of periodic
fractal structures with an arbitrary geometry in the unit
cell, Both polarization cases can be treated. In particular,
two different fractal EBG materials are considered. Numer-
ical results are reported for the transmission efficiency as a
function of the frequency. Typical effects due to the fractal
geometry are chserved, like multi-band behavior and en-
largement of stop-bands.

[. INTRODUCTION

As is well known, Electromagnetic Band-Gap (EBG) ma-
terials are periodic structures that exhibit frequency bands
within which the waves are highly attenuated and the prop-
agation is prohibited {1]. This property has been exploited
in a lot of applications at optical, millimeter-wave and mi-
crowave frequencies: EBG waveguides [2], resonators [3],
microstrip structures [4], and more, have been proposed.

Most EBG applications deal with two-dimensional (2D)
materials, invariant along a longitudinal axis and periodic
in the transverse plane [5], since they are easier to manu-
facture and they can show strong angular reflectivity prop-
erties over a wide frequency band. In 2D-EBG materials,
rods of a specific permittivity are embedded in a homoge-
neous background of different permittivity.

To obtain stopbands as large as possible is a fundamen-
tal target in EBG design: to this aim simple geometries
with different rod section shapes have been investigated [6],
and optimization techniques have been applied to suitably
shape the cross-section of the rods {7].

In some applications a multiband frequercy response of
the EBG material is required: in fact, even if an EBG struc-
ture presenting a wide stop-band is used, it may happen
that the required stop-bands are not all within this spec-
trum. In order to realize an EBG structure which shows
multiband and wide stop-band properties, it is natural to
make use of fractals.

Fractals were first defined by Mandelbrot [8] as shapes
made of parts similar to the whole in some way. A wide
variety of applications have been found for fractals in many
branches of science and engineering [9]. In the area of frac-
tal electrodynamics, the electromagnetic-wave interactions
with fractal objects are investigated, and a new class of ra-
diation, propagation, and scattering problems are treated
{10].

The self-similarity property of fractal shapes, i.e. the
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replication of the geometry at different scales within the
same structure, results in a multiband behavior making
fractals specially suitable to design multifrequency anten-
nas [10], [11] and antenna arrays [10], [12]. The same prop-
erty has been exploited also in the design of multiband
frequency selective surfaces [13].

Fractal geometries have been employed in a quite simple
PBG microstrip structure where microstrip lines with few
etched fractal holes in the ground plane have been studied
and measured [14], showing dual-stopband characteristics.

In this paper, we propose novel EBG materials made
of dielectric rods with fractal cross-sections. Due to the
fractal self-similarity of the rods, multiband frequency re-
sponses and wider stop-bands are observed, if compared
with those of EBG materials made of rods with simple ge-
ometrical shapes. To our knowledge, it is the first time
that the characteristics of fractal 2D-EBG dielectric mate-
rials are investigated. The results of this work show that
the application of fractal geometries in EBG design is a
promising area of research.

In Section II, we briefly summarize the formulation of
the full-wave theory employed by us to model and charac-
terize 2D-EBG materials [16]. In Section ITI we describe
the novel fractal EBG structures that we considered. In
Section [V, we present numerical results showing the fre-
quency responses of the proposed structures. In Section V,
we give the conclusions.

II. CHARACTERIZATION OF 2D-EBG
STRUCTURES THROUGH A FULL-WAVE
METHOD FOR GRATINGS

The formulation of our theory can be found in [15], [16].
We showed that an accurate and efficient characteriza-
tion of 2D-EBG structures can be performed exploiting a
full-wave diffraction theory developed for one-dimensional
diffraction gratings. In fact, a 2D electromagnetic crys-
tal may be considered as a stack of periodic grids of rods
separated by homogeneous layers, i.e. as a stack of one-
dimensional diffraction gratings.

Our method applies both to TE (electric field parallel
to the grating grooves) and TM (magnetic field parallel
to the grating grooves) polarizations. Briefly, we consider
a monochromatic plane wave of wavelength A (in a vac-
uum), impinging at an angie  on a muitilevel dielectric
grating. The typical layer of the multilevel structure is a
binary grating including several alternate regions of differ-
ent refractive indices. The multilevel grating is bounded by
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Fig. 1. A square lattice EBG material of square-section rods.

two possibly different media. The general approach for ex-
actly solving the electromagnetic problem associated with
the diffraction grating involves the solution of Maxwell’s
equations in the incidence region, the grating layers, and
the transmission region. By applying the boundary condi-
tions between different layers, a resulting equation system
is found. In order to solve this system and, as a conse-
quence, to compute the reflected and transmitted field am-
plitudes, and the diffraction efficiencies, appropriate tech-
niques must be employed. Care has to be used to over-
come numerical problems due to ill-conditioned matrices
obtained on imposing the boundary conditions, and to im-
prove numerical stability and efficiency of the implemented
codes.

With this method it is possible to study EBG materials
made of rods or holes in a host medium, with arbitrary
shape and forming whatever kind of lattice. The involved
materials can be isotropic or anisotropic dielectrics or met-
als, and losses can be taken into account. The structures
have a finite thickness, i.e. they infinitely extend only in
two dimensions.

III. FRACTAL 2D-EBG STRUCTURES

A square-lattice EBG material is sketched in Fig. 1: the
period of the structure is chosen to be the same along = and
y, and it is called d; n, and n;, are the refractive indices of
rod and background media, respectively. We denocte with
NL the number of rod layers, along y. The unit cells of
the novel fractal 2D-EBG structures proposed in this work
are given in Figs. 2 and 3: the generator is always a square
rod section of side length ¢p, as in Fig. 1.

For what concerns the unit-cell-generation of the first
structure (Fig. 2), at each iteration a square is added to
the middle of every side of the rod section: the side of
the added square is one third of the side close to which it
is placed. The rod section obtained after one iteration is
reported in Fig. 2(a), where c; = cp/3; after two iterations
the rod section of Fig. 2(h) is generated, where co = ¢;/3.

The second structure (Fig. 3) is generated subtracting,
at each iteration, a square to each side of the rod section:
the side of the subtracted square is one fourth of the side
from which it is cut. After one and two iterations, the rod
sections that we obtained are reported in Figs. 3(a) and
3(b), respectively.

For each geometrical configuration, it is customary to
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Fig. 2. (a) One iteration (b) Two iterations

@ &
Fig. 3. (a) One iteralion (b) Two iterations

define the so-called filling factor F', which represents the
fraction of the unit cell of the periodic structure filled by
the rod. At iteration 0, we have F' = cJ. After one iteration
the filling factor is F = 13¢3, 20c?, and 12¢2, and after two
iterations it is F' = 137¢Z, 350cZ, and 162c3, for the first,
the second and the third structure, respectively. The filling
factor is a parameter that greatly affects the transmission
and reflection properties of an EBG material. Since our
interest is in understanding the effects of the fractal cross-
section and in comparing it with standard geometries, in
our simulations we have rescaled all the structures to have
the same filling factor. i

We denote with nr the total transmission efficiency of the
EBG structure, that is the sum of the efficiencies of all the
transmitted orders (the efficiency of the n —th transmitted
order is the ratio between the Poynting-vector y-component
of the n—th order transmitted wave and that of the incident
wave). Analogously, we denote with ng the total reflection
efficiency. .

Unless otherwise specified, the incident plane wave is
supposed to impinge normally on the structure.

IV. NUMERICAL RESULTS

Let us consider an EBG structure made of a stack of
NL = 20 layers, with rods having the fractal cross-section
shown in Fig. 2. The filling factor is ' = 0.25. The rod
refractive index is n, = 2 and the host medium is supposed
to be a vacuumn (ry = 1). First of all, we checked the con-
vergence properties of our rigorous method when applied
to this kind of EBG material: we have a very good con-
vergence rate in both polarization cases, but the relevant
results are not shown here for brevity.

In Fig. 4, the transmission efficiency nr (solid line) is
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Fig. 4. Transmission efficiency nr (solid line), as a function of the
normalized frequency §2, for the EBG structure of Fig. 2(a).: The
polarization is TM. The behavior of the structure made of square-
section rods (iteration 0, dashed line) is also shown, for comparison.

shown, in a logarithmic scale, as a function of the normal-
ized frequency £ = 2“‘?’% (¢ being the light velocity in a
vacuum and w being the angular frequency), for the EBG
structure obtained after one iteration. The polarization
is TM and the behavior of the material made of square-
section rods (iteration 0, dashed line) is also shown, for
comparison. It can be noted that, when the details of
the structure are small with respect to the incident wave-
length, the use of a fractal rod section has not a great
effect on the frequency stop-bands of the structure: as (2
decreases, due to an averaging phenomenon, the behavior
of the EBG material (for a given polarization and inci-
dence angle) depends only on the filling factor and on the
refractive index of the rod material, while the rod shape be-
comes less and less important. However, the gap centered
on 2. = 0.42 is slightly wider and deeper for the fractal
EBG material: we have np < 0.01 when 0.396 < © < 0.436
and when 0.393 < t < 0.452, for the O-iteration and 1-
iteration structures, respectively; moreover, gy = 3 - 10~*
and p = 2- 1075 for the O-iteration and 1-iteration struc-
tures, respectively, in the deepest point of the stop-band.
The fractal rod section has a more interesting effect on the
stop-bands of the EBG material for higher values of the
normalized frequency §): in fact, it can be noted that the
O-iteration stop-band centered on §1. = (.73 shifts toward
higher values of £ (in particular; it is centered on €, = 0.76
for the l-iteration structure); moreover, a new stop-band
is present, centered on {2, = 0.845. Such multi-band be-
havior is typical of fractal geometries. The responses of
the l-iteration and 2-iteration structures are very similar
in this frequency range, except for negligible differences in
central frequencies and depths of the stop-bands, therefore
the curve for the 2-iteration structure is not reported here.

For what concerns TE polarization, in the 2 < 1 range
the use of fractal-section rods has not a significant effect
on the frequency stop-bands of the structure, and so the
relevant curves are not reported here. However, in Fig. 5
77 15 shown as a function of the normalized frequency §2 for
the 2-iteration (solid black line}, 1-iteration (solid gray line})
and O-iteration (dashed line) structures, when 1.5 < Q < 2.
It can be seen that for the structure made of square-section

£10
iteration O
15 iteration 1
1o — iteration 2
10% :

1.5 18 2

Fig. 5. Transmission efficiency 5y {solid line), as a function of the
normalized frequency 2, for the EBG structure of Fig. 2. The polar-
ization is TE. The behavior of the structure made of square-section
rods (iteration 0, dashed line} is also shown, for comparison.

rods there are only two small stop-bands in this range, cen-
tered on {2, =2 1.61 and 1.81, and of width A2 = 0.025 and
0.036 (nr < 0.01), respectively. For the l-iteration struc-
ture, the first stop-band shifts toward smaller values of 2
and becomes about two times larger but less deep: it is
centered on €, =2 1.54 and A = 0.052 wide; the second
stop-band, instead, shifts toward higher values of {2 and be-
comes much wider and deeper: it is centered on {2, 2 1.86,
AQ = 0.081 wide, and in the deepest point nr reaches
10~%5. The last mentioned stop-band is of particular inter-
est for high-frequency applications: for two different EBG
materials possessing stop-bands of equal size, it may be ad-
vantageous from a fabrication standpoint to choose the one
that has the stop-band occurring at the higher normaliZed
frequency {2, since the feature size scales with d. For the 2-
iteration structure, the first stop-band splits into two wider
stop-bands: they are centered on 2, = 1.56 and 1.64, and
their widths are ALl = 0.050 and 0.032, respectively; the
one centered on €1, = 1.56 is very deep, in fact np reaches
10—10, Also for the 2-iteration structure there is a wide,
deep stop-band at higher values of 2, very similar to the
one obtained for the l-iteration structure: it is centered on
0, = 1.88, AQ = 0.081 wide, and in the deepest point 5y
reaches 2 - 10716, In conclusion, it can be seen that the
fractal geometry can not only create new stop-bands but
also enlarge the existing ones.

Let us now consider an EBG structure made of a stack of
NL = 20 layers, with rods having the fractal cross-section
shown in, Fig., 3. The filling factor is also in this case
F = 0.25, the rod refractive index is n, = 2 and the host
medium is supposed to be a vacuum (n, = 1). We checked
the convergence properties of our method when applied to
this kind of EBG material, with very good results.

In Fig. 6, the transmission efficiency nr (solid line) is
shown as a function of the normalized frequency 2, for the -
EBG structure obtained after two iterations (Fig. 3(b)).
Both polarization cases are reported in the figure, and the
behavior of the material made of square-section rods (it-
eration 0, TM pol.: dashed line, TE pol.: dotted line) is
also shown, for comparison. For what concerns TM polar-
ization, the O-iteration stop-band centered on ., = 0.42
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Fig. 6. Transmission efficiency 5y (solid line), as a funetion of the
normalized frequency 2, for the EBG siructure of Fig. 3(b). The
behavior of the structure made of square-section rods (iteration 0,
dashed and dotted lines) is also shown, for comparison. Both polar-
ization cases are reported in the figure.
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Fig. 7. Transmission efficiency n (solid line), as a function of the
normalized frequency Q, for the EBG structure of Fig. 3. The polar-
ization is TE. The behavior of the structure made of square-section
rods (iteration 0, dashed line) is also shown, for comparison.

shifts toward slightly smaller values of Q2 for the 2-iteration
structure; it is interesting to note that the 0-iteration stop-
band centered on £, 2 (.73 shifts toward higher values of
Q and appreciably changes its shape, becoming less deep
but much wider (it is AQ = 0.11 wide). For what concerns
TE polarization, it can be seen that the O-iteration stop-
band centered on £, = 0.88 shifts toward smaller values
of £, becoming centered on {1}, & 0.83 and A2 =2 0.077
wide: such shift is important since it causes the overlap-
ping of TM and TE stop-bands, and therefore the forma-
tion of a wide complcte stop-band which is absent in the
non-fractal structure. In fact, we recall that a complete
2D stopband occurs if the stop-bands for both polarization
cases are present and they overlap each other.

In Fig. 7, nr is shown as a function of , for the 2-
iteration (solid black line), l-iteration (solid gray line) and
(-iteration (dashed line) structures, when 1.1 < 2 < 1.6.
The polarization is TE. For what concerns the 1-iteration
structure, it is interesting to note the presence of two wide
and deep stop-bands: they are centered on £, = 1.28 and
1.5, and they are AQ = (0,093 and 0.060 wide, respectively.
As far as the 2-iteration structure is concerned, the exist-
ing stop-band centered on ). = 1.2815 greatly enlarges,

becoming A2 = (.153 wide.
V. CONCLUSION

In this work the transmission properties of a class of
fractal periodic structures have been studied by means of
a numerical technique originally developed for diffraction
gratings. Two examples of fractal EBG materials have
been proposed and analyzed. The obtained results are
very promising, showing that the fractal geometry produces
the expected effects, like the appearance of new stop-bands
(also of the complete type) and the enlargement of the ex-
isting ones. Such properties could be exploited in many
applications where a multi-band frequency behavior is re-
quired, or wider stop-bands are needed. The employed ap-
proach is indeed very general and can deal with arbitrary
fractal geometries of the unit-cell.
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