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I. INTRODUCTION 

As is well known, Electromagnetic Band-Gap (EBG) ma- 
terials are periodic structures that exhibit frequency bands 
within which the waves are highly attenuated and the prop 
agation is prohibited [l]. This property has been exploited 
in a lot of applications at optical, millimeter-wave and mi- 
crowave frequencies: EBG waveguides [Z], resonators [3], 
microstrip structures (41, and more, have been proposed. 

Most EBG applications deal with two-dimensional (ZD) 
materials, invariant along a longitudinal axis and periodic 
in the transverse plane [S], since they are easier to manu- 
facture and they can show strong angular reflectivity prop- 
erties over a wide frequency band. In BD-EBG materials, 
rods of a specific permittivity are embedded in a homoge- 
rieous background of different permittivity. 

To obtain stopbands as large as possible is a fundamen- 
tal target in EBG design: tq this aim simple geometries 
with different rod section shapes have been investigated [6], 
and optimization techniques have been applied to suitably 
shape the cross-section of the rods [7]. 

In some applications a multiband frequency response of 
the EBG material is required: in fact, even if an EBG struc- 
ture presenting a wide stopband is used, it may happen 
that the required stop-bands are not all within this spec- 
@m. In order to realize an EBG structure which shows 
mult,iband and wide stop-band properties, it is natural to 
make use of fractals. 

Fractals were first defined by Mpndelbrot [S] as shapes 
made of parts sin&r to the whole in some way. A wide 
variety of applications have been found for fractals in many 
branches of science and engineering 191. In the area of frac- 
tal electrodynamics, the electromagnetic-wave interactions 
with fractal objects are investigated, and a new class of ra- 
d&ion, propagation, and scattering problems are treated 

POI. 
The self-similarity property of fractal shapes, i.e. the 

replication of the geometry at different scales within the 
same structure, results in a multiband behavior making 
fractals specially suitable to design multifrequency anten- 
nas [lo], [ll] and antenna arrays [lo], [12]. The same prop 
erty has been exploited also in the design of multiband 
frequency selective surfaces [13]. 

Fractal geometries have been employed in & quite simple 
PBG microstrip structure where microstrip lines with few 
etched fractal holes in the ground plane have been studied 
and measured [14], showing dual-stopband characteristics. 

In this paper, we propose novel EBG materials made 
of dielectric rods with fractal cross-sections. Due to the 
fractal self-similarity of the rods, multiband frequency re- 
sponses and wider stop-bands are observed, if compared 
with those of EBG materials made of rods with simple ge- 
ometrical shapes. To our knowledge, it is the first time 
that the characteristics of fractal ZD-EBG dielectric mate- 
rials are investigated. The results of this work show that 
the application of fractal geometries in EBG design is a 
promising area of research. 

In Section II, we briefly summarize the formulation of 
the full-wave theory employed by us to model and charnc- 
terise PD.EBG materials 1161. In Section III we describe 
the novel fractal EBG structures that we considered. In 
Section IV, we present mimerical results showing the fre- 
quency responses of the proposed structures. In Section V, 
we give the conclusions. 

II. CHARACTERIZATION OF 2D-EBG 
STRUCTURES THROUGH A FULL-WAVE 

METHOD FOR GRATINGS 

The formulation of our theory can be found in [15], [16]. 
We showed that an accurate and efficient characterize, 
tion of PD.EBG structures can be performed exploiting a 
full-wave diffraction theory developed for one-dimensional 
diffraction gratings. In fact, a 2D electromagnetic crys- 
tal may be considered as a stack of periodic grids of rods 
separated by homogeneous layers, i.e. as a stack of one- 
dimensional diffraction gratings. 

Our method applies both to TE (electric field parallel 
to the grating grooves) and TM (magnetic field parallel 
to the grating grooves) polarizations. Briefly, we consider 
a monochromatic plane wave of wavelength X (in a vat- 
“urn), impinging at an angle 8 on a multilevel dielectric 
grating. The typical layer of the multilevel structure is a 
binary grating including several alternate regions of differ- 
ent refractive indices. The multilevel grating is bounded by 
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two possibly different media. The general approach for ex- 
actly solving the electromagnetic problem associated with 
the diffraction grating involves the solution of Maxwell’s 
equations in the incidence region, the grating layers, and 
the transmission region. By applying the boundary condi- 
tions between different layers, a resulting equation system 
is found. In order to solve this system and, aa a conse 
quence, to compute the reflected and transmitted field am- 
plitudes, and the diffraction efficiencies, appropriate tech- 
niques must be employed. Care has to be used to over- 
come numerical problems due to ill-conditioned matrices 
obtained on imposing the boundary conditions, and to im- 
prove numerical stability and efficiency of the implemented 
codes. 

With this method it is possible to study EBG materials 
made of rods or holes in a host medium, with arbitrary 
shape and forming whatever kind of lattice. The involved 
materials can be isotropic or anisotropic dielectrics or met- 
als, and losses can be taken into account. The structures 
have a finite thickness, i.e. they infinitely extend only in 
two dimensions. 

III. FRACTAL BD-EBG STRUCTURES 

A square-lattice EBG material is sketched in Fig. 1: the 
period of the structure is chosen to be the same along z and 
y, and it is called d; n, and nb are the refractive indices of 
rod and background media, respectively. We denote with 
NL the number of rod layers, along y. The unit cells of 
the novel fractal PD.EBG structures proposed in this work 
are given in Figs. 2 and 3: the generator is always a square 
rod section of side length co, as in Fig. 1. 

For what concerns the unit-cell-generation of the first 
structure (Fig. 2), at each iteration a square is added to 
the middle of every side of the rod section: the side of 
the added square is one third of the side close to which it 
is placed. The rod section obtained after one iteration is 
reported in Fig. 2(a), where c1 = m/3; after two iterations 
the rod section of Fig. 2(b) is generated, where cz = c1/3. 

The second structure (Fig. 3) is generated subtracting, 
at each iteration, a square to each side of the rod section: 
the side of the subtracted square is one fourth of the side 
from which it is cut. After one and two iterations, the rod 
sections that we obtained are reported in Figs. 3(a) and 
3(b), respectively. 

For each geometrical configuration, it is customary to 
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define the so-called filling factor F, which represents the 
fraction of the unit cell of the periodic structure filled by 
the rod. At iteration 0, we have F = 4. After one iteration 
the filling factor is F = 13$, 2Ocf, and 12cf, and after two 
iterations it is F = 1374, 3504, and 1624, for the first, 
the second and the third structure, respectively. The filling 
factor is a parameter that greatly affects the transmission 
and reflection properties of an EBG material. Since our 
interest is in understanding the effects of the fractal cross- 
section and in comparing it with standard geometries, in 
our simulations we have resealed all the structures to have 
the same filling factor. 

We denote with m the total transmission efficiency of the 
EBG structure, that is the sum.of the efficiencies of all the 
transmitted orders (the efficiency of the n - th transmitted 
order is the ratio between the Poynting-vector y-component 
of the n-th order transmitted wave and that ofthe incident 
wave). Analogously, we denote with 17~ the total reflection 
efficiency. 

Unless otherwise specified, the incident plane wave is 
supposed to impinge normally on the structure. 

IV. NUMERICAL RESULTS 

Let us consider an EBG structure made of a stack of 
NL = 20 layers, with rods having the fractal cross-section 
shown in Fig. 2. The filling factor is F = 0.25. The rod 
refractive index is n, = 2 and the host medium is supposed 
to be a vxuum (Q = 1). First of all, we checked the con- 
vergence properties of our rigorous method when applied 
to this kind of EBG material: we have a very good con- 
vergence rate in both polarization cases, but the relevant 
results are not shown here for brevity. 

In Fig. 4, the transmission efficiency 77~ (solid line) is 
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shown, in a logarithmic scale, as a function of the normal- 

ized frequency R = & (c being the light velocity in a 

vacuum and w being the angular frequency), for the EBG 
structure obtained after one iteration. The polarization 
is TM and the behavior of the material made of square- 
section rods (iteration 0, dashed line) is also shown, for 
comparison. It can be noted that, when the details of 
the structure are small with respect to the incident wave- 
length, the use of a fractal rod section has not a great 
effect on the frequency stop-bands of the structure: as R 
decreases, due to an averaging phenomenon, the behavior 
of the EBG material (for a given polarization and inci- 
dence angle) depends only on the filling factor and on the 
refractive index of the rod material, while the rod shape be- 
comes less and less important. However, the gap centered 
on R, N 0:42 is slightly wider and deeper for the fractal 
EBG material: we have 77~ 5 0.01 when 0.396 < CI < 0.436 
and when 0.393 < R < 0.452, for the O-iteration and l- 
iteration structures, respectively; moreover, m ” 3. 1OP 
and 7)~ g 2. lo@ for the O-iteration and l-iteration struc- 
tures, respectively, in the deepest point of the stop-band. 
The fractal rod section has a more interesting effect on the 
stopbands of the EBG material for higher values of the 
normalized frequency 0: in fact, it can be noted that the 
O-iteration stop-band centered on R, g 0.73 shifts toward 
higher values of R (in particular, it is centered on R, g 0.76 
for the l-iteration structure); moreover, a new stop-band 
is present, centered on n, g 0.845. Such multi-band be- 
havior is typical of fractal geometries. The responses of 
the l-iteration and Z-iteration structures are very similar 
in this frequency range, except for negligible differences in 
central frequencies and depths of the stopbands, therefore 
the curve for the 2-iteration structure is not reported here. 

rods there are only two small stop-bands in this range, cen- 
tered on R, N 1.61 and 1.81, and of width AR Y 0.025 and 
0.036 (~7 5 O.Ol), respectively. For the l-iteration struc- 
ture, the first stop-band shifts toward smaller values of Q 
and becomes about two times larger but less deep: it is 
centered on Cl, N 1.54 and AR N 0.052 wide; the second 
stop-band, instead, shifts toward higher values of R and be- 
comes much wider and deeper: it is centered on n, %’ 1.86, 
AR 4 0.081 wide, and in the deepest point VT reaches 
10-15. The last mentioned stop-band is of particular inter- 
est for high-frequency applications: for two different EBG 
materials possessing stop-bands of equal size, it may be ad- 
vantageous from a fabrication standpoint to choose the one 
that has the stop-band occurring at the higher normaliied 
frequency R, since the feature size scales with d. For the 2- 
iteration structure, the first stop-band splits into two wider 
stop-bands: they are centered on R, N 1.56 and 1.64, and 
their widths are AR % 0.050 and 0.032, respectively; the 
one centered on R, N 1.56 is very deep, in fact v reaches 
10-‘D. Also for the Z-iteration structure there is a wide, 
deep stopband at higher values of R, very similar to the 
one obtained for the l-iteration structure: it is centered on 
0, N 1.88, An N 0.081 wide, and in the deepest point q~ 
reaches 2. 10-16. In conclusion, it can be seen that the 
fractal geometry citn not only create new stop-bands but 
also enlarge the existing ones. 

Let us now consider an EBG structure made of a stack of 
NL = 20 layers, with rods having the fractal cross-section 
shown in, Fig., 3. The filling factor is also in this case 
F = 0.25, the rod refractive index is n, = 2 and the host 
medium is supposed to be a vacuum (nb = 1). We checked 
the convergence properties of our method when applied to 
this kind of EBG material, with very good results. 

For what concerns TE polarization, in the CI 4 1 range In Fig. 6, the transmission efficiency 17~ (solid line) is 
the use of fractal-section rods has not a significant effect shown as a function of the normalized frequency R, for the 
on the frequency stop-bands of the structure, and so the EBG structure obtained after two iterations (Fig. 3(b)). 
relevant curves are not reported here. However, in Fig. 5 Both polarization cases are reported in the figure, and the 
17~ is shown as a function of the normalized frequency R for behavior of the material made of square-section rods (it- 
the 2.iteration (solid black line), l-iteration (solid gray line) eration 0, TM pal.: dashed line, TE pal.: dotted line) is 
and O-iteration (dashed line) structures, when 1.5 5 R < 2. also shown, for comparison. For what concerns TM polar- 
It can be seen that for the structure made of square-section ization, the O-iteration stop-band centered on fl, Z 0.42 
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shifts toward slightly smaller values of Q for the 2.iteration 
structure; it is interesting to note that the O-iteration stop 
band centered on & N 0.73 shifts toward higher values of 
R and appreciably changes its shape, becoming less deep 
but much wider (it is AR IO.11 wide). For what concerns 
TE polarization, it can be seen that the O-iteration stop- 
band centered on Q, G 0.88 shifts toward smaller values 
of R, becoming centered on R, N 0.83 and AR G 0.077 
wide: such shift is important since it causes the overlap 
ping of TM and TE stop-bands, and therefore the forma- 
tion of a wide complete stop-band which is absent in the 
non-i&&al structure. In fact, we recall that a complete 
2D stopband occurs if the stopbands for both’polarization 
cases are present and they overlap each other. 

In Fig. 7, 17~ is shown as a function of R, for the 2. 
iteration (solid black line), l-iteration (solid gray line) and 
O-iteration (dashed line) structures, when 1.1 5 R 5 1.6. 
The polarization is TE. For what concerns the l-iteration 
structure, it is interesting to note the presence of two wide 
and deep stopbands: they are centered on 0, N 1.28 and 
1.5, and they are AR g 0.093 and 0.060 wide, respectively. 
As far as the Z-iteration structure is concerned, the exist- 
ing stop-band centered on R, ” 1.2815 greatly enlarges, 

becoming An % 0.153 wide. 

V. CONCLUSION 

In this work the transmission properties of a class of 
fractal periodic structures have been studied by means of 
a numerical technique originally developed for diffraction 
gratings. Two examples of fractal EBG materials have 
been proposed and analyzed. The obtained results are 
very promising, showing that the fractal geometry produces 
the expected effects, like the appearance of new stopbands 
(also of the complete type) and the enlargement of the ex- 
isting ones. Such properties could be exploited in many 
applications where a multi-band frequency behavior is w- 
quired,, or wider stopbands are needed. The employed ap 
preach is indeed very general and can deal with arbitrary 
fractal geometries of the finit-cell. 
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